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1 Fourier Inversion, Plancherel’s Theorem, and Temperate
Distributions

1.1 Fourier inversion

Last time, we introduced the Fourier transform

Fu(ξ) =
1

(2π)n/2

∫
Rn

e−ix·ξu(x) dx.

We had an “inverse”

F−1v(x) =
1

(2π)1/2

∫
Rn

eix·ξv(ξ) dξ.

Both F and F ′ are functions from S → S, where S = {ϕ : |xα∂βϕ| ≤ cα,β} is the Schwartz
space.

Theorem 1.1. F−1F = Id on S.

Proof. Let’s first try a brute-force approach and see what happens.

F−1Fu =
1

(2π)n/2

∫
Rn

eix·ξû(ξ) dξ

=
1

(2π)n

∫
Rn

eix·ξ
∫
Rn

e−iξ·yu(y) dy dξ

?
=

1

(2π)n

∫∫
ei(x−y)·ξ dξ dy

We know û has rapid decay, so the first integral is well-defined. But it is not clear how we
can integrate here. The dξ integral should evaluate to be δx=y in some way. Here is what
we actually do:

= lim
ε→0

1

(2π)n

∫
Rn

eix·ξe−
ε
2
ξ2
∫
Rn

u(y) dy
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Now we can legitimately apply Fubini’s theorem.

= lim
ε→0

1

(2π)n

∫∫
u(y)ei(x−y)·ξe−

ε
2
ξ2 dξ dy

= lim
ε→0

∫
u(y)e−

(x−y)2

2ε ε−n/2 dy

= lim
ε→0

∫
u ∗ ϕε

= u,

where

ϕε(y) =
1

(2π)n
e−

y2

2ε
1

εn/2
ε→0−−−→ δ0.

1.2 Isometry properties of F on L2

Now let’s shift our attention to L2, with inner product 〈u, v〉 =
∫
uv dx.

Proposition 1.1. The Fourier transform is unitary on L2. That is,

F∗ = F−1, (F−1)∗ = F .

Proof.

〈F , uv〉 =

∫∫
e−ixξu(x) dx v(ξ) dξ

=

∫∫
e−ix·ξv(ξ) dξ u(x) dx

=

∫∫
eixξv(ξ) dξ u(x) dx

= 〈u,F−1v〉.

This has the following consequence:

Theorem 1.2. F : S → S is an L2-isometry.

Proof. If we set u = v, we get

‖u‖2L2 =

∫
|u|2 dx = ‖Fu‖2L2 .

We can use this to extend F to L2(Rn) by density. If u ∈ L2, find un ∈ S such that
un → u in L2. Then un is Cuachy in L2, so Fun is Cauchy in L2. So limn→∞Fun =: Fu.

Remark 1.1. The Hahn-Banach theorem says that we can extend operators that are
densely defined, but in general, there is no guarantee of uniqueness.
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However, it is not immediately clear that we can do this approximation of elements of
L2 by elements in S.

Proposition 1.2. If u ∈ L2, then there exist un ∈ D such that un → u in L2.

This says that D is dense in L2.

Proof. Step 1: Approximate u by compactly supported functions u = limn→∞ un :=
u1{|x|≤n}.

Step 2: Regularize u = limε→0 u ∗ ε. Here, ϕ ∈ D iwth |intϕ = 2, and ϕε = ε−nϕ(x/ε),
so ϕε → δ0 as ε→ 0. So u ∗ ϕε → u in D′ if u ∈ D′ and in L2 if u ∈ L2.

So we get the following theorem:

Theorem 1.3 (Plancherel). F : L2 → L2 is an isometry.

1.3 Temperate distributions

Can we extend F to any larger spaces? First, we will talk about the Fourier transform as
a map F : S ′ → S ′.

Definition 1.1. S ′, the space of temperate distributions, is the space of distributions
which exend to continuous linear functionals on S.

u ∈ S ′ if there is a constant c such that for Rϕ ∈ S,

|u(ϕ)| ≤ c
∑
finite

pα,β(ϕ), pα,β(ϕ) = sup |xα∂βϕ|.

.
Heer is how we extend F and F ′ to S ′: For u, v ∈ S,

〈Fu, v〉 = 〈u,F−1v〉,

so we have Fu(v) = u(F−1v). Replacing v by v give Fu(v) = u(Fv), where u ∈ S ′ and
Fv ∈ S. So we can define

Fu = u(Fv)

for u ∈ S ′, v ∈ S.
S ⊆ E , so E ′ ⊆ S ′. If u ∈ E ′ (is compactly supported), then

Fu(ξ) = u

(
1

(2π)n/2
e−xξ

)
.

So we see that F : E ′ → E . The moral here is that “F interchanges decay and regularity.”
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1.4 Examples of temperate distributions

When is a function a temperate distribution? If u ∈ S ′ and ϕ ∈ S,

u(ϕ) :=

∫
u(x)ϕ(x) dx,

where $(x) is rapidly decreasing. So if |u(x)| ≤ c(1+ |x|N ), then the integral is convergent.

Example 1.1. All rational functions are temperate distributions.

You should not get the idea that these are all the temperate distributions.

Example 1.2. Consider
u(x) = ex cos ex.

Think of u = ∂
∂x sin ex = ∂xf . Then

u(ϕ) = −f(∂xϕ),

where ∂xϕ ∈ S if ϕ ∈ S. So a temperate distribution may not have much decay if it has
enough oscillation, and there is a delicate balance between the two.

Here, if we have x, ∂ : S → S, we have extended x, ∂ : S ′ → S ′.

1.5 The Fourier transforms of δ0 and H

What is δ̂0?

δ̂0(ξ) = δ0

(
1

(2π)n/2
eix·ξ

)
=

1

(2π)n/2
.

Remark 1.2. People will often change the normalization constant in the Fourier transform
to get δ̂0 = 1. So people will also replace eix·ξ with e2πix·ξ. This is useful if you want to
deal with Fourier series or if you want to make a distinction between the Rn of the input
and the Rn of the ourput. These are actually the same space because Rn is the cotangent
space fo Rn. For more general spaces, the Fourier transform will not have the same input
and output domain. We will not need to worry about this for our PDEs.

In 1 dimension, we have ∂xH = δ0. Then

F(∂xH) = F(δ0),

which tells us that −iξF(H) = 1
(2π)n/2 . So we get that

Ĥ =
i

(2π)n/2
· 1

ξ
.
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Take u compactly ussported in [0,∞). Then

û(ξ) =

∫
e−ix·ξu(x) dx.

Switch to complex numbers ξ + iζ. This integral ecomes∫
e−ixξ+xζu(x) dx.

If ζ < 0, we have exponential decay for x > 0. So û(ξ) extends to a holomorphic function
in {Im z ≤ 0}.

In this picture, we can think of

Ĥ =
i

(2π)n/2
· 1

ξ − i0
.

We can also look at

Ĥ − 1 =
i

(2π)n/2
· 1

ξ + i0
.

So if we take the average, we get

̂
H − 1

2
=

i

(2π)n/2
PV

1

ξ
.
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